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Abstract

We consider a model of oscillator with nonpolynomial

interaction admitting exact solutions both for energy

ei_envalues in terms of zeros of Besse! functions considered

as _L,.Tctions Of the continuous index, and for the

ccrresponding eigenstates in terms of Lommel polynomials

Let us consider the following Hamiltonian,

+ +o }
+

Here _ and _ are usual bosun annihilation and creation operators,

and k are positive real parameters (the generalization to complex

coupling constant 2 does not lead to any new result, since the phase

of 2 is trivially eliminated by the canonical transformation _ 9 _e i_

preserving the energy spectrum). If the mean number of quanta is

close to zero, then (I) turns into the Hamiltonian of usual forced

csLi!]e_t_r. In the opposite quasiclassical regime of large mean

n_.,__r of e'::ic_tations N = <_ _> >> _ the substitution _ _ Ni'2e _

leads tc the emergx'-independent interactior, Hami!tonian

H = X.cos_, (2)
Lr,t

=_nce the e>cpression inside the figure brac-which is in fact e>:iact, __

ke._ is nothing blot the Susskind-Glogower cosine phase operator [_]

_k;ich properties were discussed in detail in the known review by

Cer_L_the_s and Nieto Z2]-

E::.:;pa_ding the energy eigenstate _E> over the Fock states
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and taking into account the k_own matri>:; elements of operators r, and

._-_ one can easily reduce the stationary Schroedinger equation to the

followi_g set of coupled linear algebraic equations,

EC = kc 0
O %

Z'c_'_ = ,i_>'i-,-X. _c r,-1 + c ,-_-i).' _'_ > I (4 )

It is cnnvenient to introduce dimensionless variables

= 2/_ , /J = E/_ . (5)

Then normalized energy p is determined from the equation _(_,p)=O,

where function _, is the characteristic determinant of system (4) :

-_ _ 0 0 0 .....

l-p _ O O .....

(_,W) = 0 2. 2- H _ 0 ..... (6)

0 O _ 3- W _ .....

. i.l.lul.wl U. Im .Ulillil_..

E::<panding this determinant over the elements of the first row one can

easily obtain the following recurrence relation,

• (2, ,u) = -p_(2, p-l) -2_'_(-z, W-2). (7)

Introducing new function

F(_,_) = _-P_,(_,/_) (8)

one can rewrite (7) as follows,

2W
F(z, _) + F(_, W-2) =-2_-F(_, p-l). (9)

But this is the .well known relation for Bessel functions [3,4].

Consequently, the energy levels are determined by zeros of Bessel

functions in accordance with the equation

_P / (2_) = O. (I0>

For small values of parameter _ the well-known power series e>(pansion

of the Bessel function leads to the equation

O0
2 . )_

--__ - C). (!I)n_,! FC_:_-p_._
tn=O

For _ _ 0 the solutions of this equation with respect to M are

determined by the poles o÷ gamma-function. Evidently, they reproduce
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appror:imate!y the equidistant harmonic oscillator spectrum: Wr,

r_ = 0,1,2,--- Since all poles of gamma-functiom are simple, with the

residues (-1)r'/rL!, the correction to the _-th energy level has the

2(n÷i)
order of "-_

2 _2_r'*i)/_ n_! ( 12)
,_ _ , Wr,H O --'. = _. --

Note that all corrections are negative.

For large values of the coupling constant we can use the known

,,m_tc_ _ formula

(2z) _ (nz)-_'2cos(2_ + nH/2 + n/4). (13)
3-i -P

Then for _H_ << _z_ the spectrum is equidistant again, but with the

twice distance between the neighbouring energy levels:

_ 1/2 + 2r_ -4_/_ + 0(2-I)- (14)
T;

Here _ is an arbitrary integer having the same order of magnitude as

the large parameter _. Note that energy values depend on the coupling

constant in a specific almost periodic manner:

(z) _ (_ + _/2).
Hn _n_i

Now let us look again at eq. (4). Comparing it with

_ecurrence relations for special functions given in [3,4],

recocnize that it is nothing but the equation for Lomme!'_

mials (which are in fact polynomials with reEpect to i/z)

(15)

different

one can

polyno-

2(lJ + n)

r1÷i,_._ rl--i,_ 7 rbZ)

(16)

Consequent I y,
_..'2

H> - " 2_-r,
c =N(H,z)Rn,_WC-2zD =N(_, _) "-_ ,

r: l ! C'r_-2LD ! FC Z -_->

I=0

w_ere ?_(_.z) is the normalizing factor. For e>_ample, the first

_-oe_ficients ___N) = ¢_H_/N(H,z ) are as follows,
rl r;

c = I, = W/a, c = p(H-1)/_ 2 - 1
0 i 2

Taking into account (12) we have, e.g., ÷or the ground state

C = I _ C = --'_, _ = _

In conclusion let us discuss the correspondence between

quantum problem under study and its classical counterpart

(17)

three

(18)

(19)

the

described
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:_. -he energy - phase canonical variables

. 2 [q ]E = _G + q2D. _o = arccos ./_2ED I/2 (20)

with _ami Itoni an

H = £ + kcoss, (21)

Since this Hamiltonian depends ,[_neaz-Zlv on the energy variable B, the

c_=.nonical equations of motion

aE-..at= ,_H..:o,_, o_,...ot = -OH.,,_E (22)

car _',e _ound without difficulty for an arbitrary "potential" /¢¥,):

w • _L_ )¢<tD = -t. EC_D = B + JCO.) f(_._ (-_7_
0

WoL,_eve-, in the quantum Ease just the "potent• al " cOsm, seems

s_ngL',_shed Fo_ ewample, if one takes _nstead of (2) the interac-

tio_ Ham_!tori_B.r:

..... -_ o,_ r6_ and (7' one gets (_ = P_=- iT:_ead .... - 2z)

-,u 0 _ 0 0 .....

0 ! -_ 0 _ 0 .....

_'_,/_), = z 0 2-H 0 _-_ ----- ,. (25)

0 z 0 3-W 0 -_......

llwlll••l ll=willlsli•, •lw=ww•l

_(._ M) = __p_(2, W__I) + ¢2( --I){'(_, W--3) + _(z, W-4) (26)

with unknown solution.

Although the physical meani ng of the quantum mode I with

Hamiltonian (I) is not clear at the moment (its "nearest neighbour"

H = B_/2 + k_os¢, describes the Josephson junction), we hope that due

tc its beauty it will _ind applications in future.

The authors thank V.P.Karassiov *or valuable dis_-ussions.
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